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ABSTRACT

' A frequently occurring problem in weapon systems analysis is the
computation of expected fractional damage of an area target engaged by
a salvo of area danaging rounds. Of particular interest is the case
involving both round to round and occasion to occasion errors. When the
number of rounds is large, the available solutions nay encounter acute
computational difficulty. This report presents a computational
procedure, using Jacobi polynomials, which overcomes this difficulty.

W

T ——— V-




I1.
ITI.

V.

VI.

TABLE OF CONTENTS

LIST OF SYMBOLS . . « « o « &
INTRODUCTION. « + « « « o « .
NATURE OF THE PROBLEM . . . .
EXPANSION OF (1-z)Y I Jacosr
ILLUSTRATIVE EXAMPIE. . . . .
NUMERICAL RESULTS « + « + . «

Discussion of Results. .
CONCLUSIONS « « « o &« « & o &
REFERENCES. « « o « o o « +

DISTRIBUTION LIST + « o « « &

* o o o o o

o o & o &

o o o o o o

|

PSR SIPIE RS




& I MR A o s e RIS W Nk e e .
Lo B R T e B b 8 A Y 1 5 5 b R S S et

LIST OF SYMBOLS

a,b Axes of elliptical target in x and y directions

?& Expected fraction of target damaged
N Number cf rounds in salvo
) pl(K) Single shot<probgbiiity of damaging a target point (x,y)} with . !
a round impacting at (ui,vi) :

pz(uivi) Distrihution of impact points of the i-th round about its
aim pcint

pB(x,y) Distribution of (x,y) '

A i e

Ph(g,ﬂ) Distribution of occasion to occasion errors

o L e ey e

RT Ta:get radius for circular target

(ui,vi) Impact point of the i-th round

w(z) Weighting function in Jacobi poiynomials T
(x,y) . Target point
(g,M) Common aim point for all Qeapons
g "Common value of Oy and o& when o, = ay
ay Parameter in the damage function, pl(K)
ax,ay Standard deviations of the round to rcund errors
cg,cn Standard deviation of the occasion to occasion errors
Qr(z) The r-th Jacobi polynomial
T
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I. INTRODUCTION

A frequently occurring problem in weapon systems analysis is the
computation of the expected fraction of a target damaged by a salvo of
area damaging rounds all aimed at the ‘same aim point. The many variations
of this problem are commonly referred to as coverage problems. Of
particular interest is the case involving both round to round and

occasion to occasion errors. The case involving only round tc round

errors has been treated by Groves.l The more general case invblving
both types of errors, in the form considered in this report, is
contained in an unpublished work by Grubbs.2 When the number of rounds
is large, both Croves' and Grubbs' procedures encounter acute
computational difficulicty. An analysis of this difficulty and the
presentation of an alternate computational procedure employing Jacobi

it WAL T ARs 12 v as 4 b aem

polynomials comprise the substance of this report.

Let pl(K) = pl(Kl(ui,vi), (x,y)) be the conditional probability of
damaging the target point (x,y) given that the i-th rcund impacts at
point (ui,vi) and let p2(ui,vi) be the density function describing the
distribution of (“1’Vi) about the aim point. If all rounds in a volley
are ideitically distributed about the same aim point (€,7), then the
probability of damage over all impact points and all rounds i, 1=1,2,...,N,
is equal to 1 - (l-z)", where

pl(K) pz(u,v) dudv. (1)

be—ys
&‘——)8

If one assumes (x,y) is distributed over the target area as
rj(x,y) and the intended aim point (&,7) is itself a random variable
with density ph(g,ﬂ), then for N rounds aimed at the commcn aim paint,
the expected fraction of the terget damaged, fN’ is giver by

* References are listed on page 23.




I I I I (1 - (1-2)"] Ps(x,¥) ph(;.n) degandxdy (2)

T.o-o
where T {s the target area.
The difficulties arising in the solution of (2) are discussed in

Section II. A computational procedure using Jacobl polynomials to
overcome these difficulties is developed in Section III. In Section IV

lanlillustrative exaaple is given and numerical results are presented in

Section V.

II. NATURE OF THE PROBLEM

The procedure used by Grubbs and Groves to solve (2) consists of
first expanding fN(z) using the binomial expansion

£,(z) = (o) - Z(xr’() (3)

Thus (2) can be written as

AL W o ()
J:
where
o =[] [ ] 2 nya ny(em aganexay. (5)

T @

For some target distributicns and for some forms of the distributions
pi(x,y) and ph(g,n), Gj can be obtained analytically, see e.g. .
Reference [3]; however, in most cases approximations are required.

In some problems of interest, Ek is desired for large N, e.g.,
N 2 50. Although ?& lies in the interval O < Ek £ 1, the individual
terms of the series in (4) can become extremely large. As shown in

10




Seetion V, Table 1., the partial sums of this ceries may oscillate in
aten, inttlhlly with Increasing magnitude until at some value of the
Jwamation index the mopgnitude begins to decrease. For large N and
same V. the guantity :g\ GJ may attain an order of magnitude, which
exoveds the word length of a digital computer, even when double or

triple preclicion computatione are uced, When this cltuation is present,
the roundoff crror Incurred at various stages of the computations exceceds
the value of ?N’ henee Equation () 1s of no value in computing the

frectlonal damage, T,.

The source of the computational difficuity is the binomial
sontficients artising in the expansion c€ (l-z)N. Accordingly, the
approach used in thi: report is based on ¢inding an alternate expression
for (1-:)“. This ic done in termc of Jacobi polynomials. In particular,
W 3eck an approximation of the form

M
o) . - N =z ¥ . <
£le) s (1) aByz) = ) a2l 0z, usN (6)
r=0

where ¢ (2) 1o the r-th Jacobi polynomial appropriate to the weighting
function

w(z) = za(l-z)B ,a>=1,8> -1, (n

slnee (1-.*.)N is a polynomial of degree N, Equation (6) ic an exact
representation vhen M = [;. The computation of fN(z) using Equation (6)
for large M encounters roundoff problems gsimilar to those present wi:a
using (3). The Jacobi polynomials, however, provide a weighted least
squares approximation and usually lead to high accuracy :ith only a few
terms. This is particulary true for the Chebyshev polynomials, a
special case of the Jacobi polynomials. These polynomials have the 5
advantage that each successive approximation is closer to fN(z), i.e.,

IF 4y (2) - £4(2)| < IF(2) - £,(2)] (8)

E VIR A

il e e

for r=0,1,...,li-1.
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A new series for computing ?k.employing the Jacobi series expansion
of (l-z)N 1{s listed in Section IV. 1In Section V the behavior of this
series is compared to the series derived from the binomial expansion,
Equation (&4). Thé objective of the studies performed was to determine
whether the new series cculd be truncated for some M before severe
roundoff error arose, and still retain two or three decimal accuracy
in fN.

III. EXPANSION OF (1-z)N IN JACOBI POLYNOMIALS

The Jacobi polynomiais are ortuocgonal in the interval 0 € z < 1, the
interval of irterest for z as defined by (1). The Jacobi polynomial
Qr(z) can be generated by the expression

8 (2) = o, 2 %(1-2)"® UT(a), (9)
where
J .
uf,(z) = i‘-:j- [zrm(l-z)r*e:], §=0,1,...,0 (10)
dz
L

and c,. is an arbitrary or normalizing constant. See, e.g., Hildebrand.
The coefficient ay in (6) is obtained from the integral

N
ey = (1/7)) J‘: w(z) (1-2)V ¢ (z) dz, (1)
where
7. = f w(z) #(2) az. (12)
. o ,

The integral in (11) can be integrated by parts. Let u = (l-z)N and
v = U:(z) dz. Then du = - N(l-z)“'1 and v = Ui'l(z). Since

udo) =ud(1) =0 , 31,2,...,rm,




s

8 = (c, 8/7) Il (1-z)"2 u:'l(z) dz. (13)

(¢}

el

After integrating by perts r times we cbtain

™
§

N = (cr/7r) N(N'l)...(ﬂ-r+l) I: U:(Z) (l_z)“-r 1?

[crﬂl/yr(N—r)L] Il 27(12) 4z

o
- [cr!i/rr(N-r):] B(r+artl, N+8+1), (1)

‘ 1
where B(x,y) is the beta function. As shown by Hildebrand , page 271,
the quantity - is given by ’

=
\

= (-1)'r: A c, jl zrm(l-z)r+e dz
T o

"

(-1)Tr! A <, B(r+o+l, r+8+l), (15)

where A.. is the coefficient of z' in Qr(z). The coefficients A_, in

rJ
fr(z) can be obtained by use of the hypergeometric series. See, e.g.,

Courant and Hilbert.’ ¢r(z) is given by

r
¢ (2) = 2 A, 29, (16)
J=0

where Arj is obtained by replacing s by (a+8+r+l), t by -r and v by
(1+a) in the J-th coefficient, HJ, of the hypergeometric series, i.e.,

(5+i‘l) (t+i'l)/(V+i‘l)i: J=1,2,...,r (17)

13
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A (-1)} (r#a+8+)(r-0a+8+2)...(2r-‘a+8\
rr (Twa) (). (ra) (18)

-1) T'(2r+o+8+1)I'(1+a)
el ) (19)
where T(x) 1o the tamma function. Inserting the results of (15) and
(1) tnto (1) and employing the relationship

B(x,y) = T(x)(y)/T(x+y)

we ubtaln

14 a (1 §°r+a+8+12F§r+a+§+llr(r«m+1)r(N+B+l) (20)
: ri T \r, T(l4a)I(N+r+a+8+2)[(r+8+1)

Cquation {20) is made more amenable to computetion by noting that

N - 8+1)(B+2)...(B+N (21)
L. oN a+8+2) (a48+3) . o o (a+B4N+1

and

N-r+l)(r+a+8)(r+o)(2r+a+g+l (22)
r{N+r+a+8+1)(r 2r+a+8-1 ' -

T avoid ar indeterminancy for r =1, o + 8 = - 1, a,, should be written

IN

. [(N-r+ll§rﬁr‘§2?*u+9+l}]
81 = SoNLr(N+r+a+B+1) (r+B *
} IV. ILLUSTRATIVE EXAMPLE

s 2,0
Lt T - 1(x,y)|x‘/a“ + ye/b2 - 1} ,

Py (Kl (up,v,), (x,5)) = exp {(-1/2n§)[(x-ui)2 + (y-vi)zj} »  (23)

po(ugvy) = (femoya ) exp {(-1/2) (=062 + (v-MP/Z]} ,  (24)
P5(x,y) = 1/map (25)

and

1k ¥
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R &M = (Vzreyen) exp {(-1/2 (8% + (Vo)) . (26)

For the above example the zommon aiming point (Z,M) is distributed
about the target center, since the target center s {0,0) and the mean
of (£,M) is (0,0). By inserting the above representations into
Equation (1) it can be shown that z reduces to

2 = qeéxp {(-1/2)[(§-x)2/(c§+ci) + (ﬂ-y)e/(c§+c§)]} s (27)

where

]1/2 (26)

a = 62/ (B+c2) (ofse?)

From (2), (5), (6) and (1€)

?N=1-,Z ZA (29)

r=0

where GJ is given by Equation (5). By inserting the distributions
specified by Equations (23) through (28) into (5), by completing the
squares in zJph(g,ﬂ) and integrating over € and T, GJ can be shown to

reduce to
= J * = .
c, c(qv/3) Is 1,}2,.- N, (3¢)
G =1,
[o]
“here Y
1/2 :
C = Eﬁc§+oi)(c§+ce) /ab, (31)
1/2
o - [(ch 2ed)/3] ", (32)
1/2 :
E, - [(Jcnwxw 2] I * (33)
and .

15
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1e (ame) [ [em [(cr/a02n2? ) ey, (0)
] |

T being the ellipse x2/a2 + yesz- =1,

Since .Ara = 1, Equation (29) can be written

N N r
- N A\ J
fy=1- Z ay = C Z gy L Aplat/) I, (35)
r=0 r=1 J=l
The series dgireloped by'Grubbsg, using the binomial expansion, takes
the form S
N ' '
S Rl L) B
ey (Y W e
J=1

When arg =0y = 0, i.e., no target location error, this series is
1dentical to that described by Groves®™.

Analytical approximations for I 3 are conta.ined in the paper by

,Grubbsa. I 3 can also be obtained by numerical methods, e.g., by the

method described by Breaux6 or Ialternatively as follows: Let
t -x2
ert (t) = z/ﬁj e dx. (37)
o .
On many computers this function is as standard as the trigonometric or

exponential functions and hence can be used to eliminate one integral
in (34). Equation (34) can then be written

1, = VBf/E, J': exp [ -(1/2)y%/65] ext [/ g2 o)) & (8

I 3 is now in the form of a single integral and can easily be obtained
on a digital computer by use of standard subroutines. '

16
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When S “y ‘,“g S TP and for clreculur worepgets, Lo,
no=b o= HT’ woe abtain the familiar result

r 2,0 e
1J =1 - vxp (-RT/QoJ)] , (39)
Chere GJ i¢ the common value of DJ and EJ' When c§ s, 20, IJ tak. o
the form
IJ = rl - exXp (-‘,j)] (L)

where

b4
]

= n,i/z(oiw‘"-‘) .

To provide an independent method for ‘.cceking the ars~uracy and

cunvergence of the ceries developed tn this report, the numerical studicd

wore performed for cuced whers IJ rould bee roprecentea by Equation ().

1 . 1 .
For this cace Grubbs™ seriel 1y identical L Sroves™ and can be writton

N
T,-c ) (-0 (J‘) (@773 (1eexp(23)). (b1)
J=1

7

For this cace Breaux' hags found an alternate serle:

W
Foec )y [ae™’ - - ()
=1

This series 1s eacily summable for all value: of the parameters, Ops Ty
RT’ and i and provides an exact solution for comparison. Note that the
above simplifications are made only to provide an exact solution for
numerical comparison. The general structure of the computational
procedure does not necessitate that IJ be’representable by (4O) since
as pointed out previouscly the integral form of IJ in Equation (38) can

be obtained in fractions of a second by use of stanlard techniques for
numerical quadrature.

17
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V. NUMERICAL RESULTS

The numerical studies were designed to examine the accuracy and

rate of convergence cf the following series:

| M
S e ) (5w g w»
| J=1 '
M r
Sy m1- )y nC ) ag ) A0 T
r=0 r=1 J=1
‘l; ..
- S)S(B) = -C Z arN L Ard(qJ/J) IJ (hs)
r=1 J=1

Equation (43) is the series arising from (41), (44) is that arising from
(35). By setting z = O and M = N in (6) it can be shown that

N
) a
=0
Applying this result to Equation (35) leads to the third series S&j).

Numerical experiments, see Table I, indicate *hat Jhen f is not

E equal to O or 1.0, S&e) decreases monotonically and SM increases

monotonically as M increases both approacting fN A veighted average

of the two sequences SM and SM would thus seem to offer a more
accurate approximation to f

N Such a new sequence can be constructed
E as follows: Let

Then define

) =[50 05(® 4 3 53] [ /() + 1/as{P]. (48)

é 18




{'he fvlght; uttieche 4 Lo rach seguence are inversely proportional to
[
'X"S',. slns the o gquenee Wwith cmaller &&1) would scemingly b Lhe moot

(1)
Sootarabe. Abternative iy, u& T ean be viewed ac the soquence formed by
s ‘,‘,
o interocetion of the Qinear extrapolation of the two Sequenes 3&')
Iy

()
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feculte of numerical experiments, not Listed here, indicate that
he U oconvergense 1o attalned for weight functions having o = 8 = - 1/2,
letey

w(z) =2 1/2 (1-2)" 1/2

For this weight function the Jacobi polynomials reduce to the
" .nifted" Chebyshev polynomiali. These polynomials generally have the
brut convergence properties, us verified in this cace by experiment.

Dlscussion of Results

The eritlcal parameters offecting the accuracy and convergence of

the series colutions are g and N. When °§ = o,n = 0, and o, = uy = g,
Equation (28) can be written
" = o& (1-9)/q. (u7)

The cases studied were for o * 1.0, @ = .01, .1, .5, .5, .7, .9
Lo~ 59, 100, 15¢, 200, %0C, L0O, 500, 1000, and TR = 50 with ¢ 2onstraired
by Equation (LT).

A comparison of the convergence of the four serics, Equations (L%)
through (46) is 1llustrated for a typical case in Table I. The serius
arising from the binomial expansion is seen to oscillate with extremely

; large magnitude and does not provide a useful resuit until most of the
; S0 terms are added. S&a) and s&j), on the other hand, approach the

! truc :olutfon monotonically as does S&h , the weighted average. It
should be noted that the computations were performed on BRLESC
(Ballicstic Research Laboratories Electronic Séientific Computer) which

ha: a useable word length equivalent of 256 or approximately 1017. The

1C

normal word length on must commercial machines is approximately 10

19
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For this reason it seems unlikely that S&l) could be summed at all;
for this case, on & cormmercial machine, except by use of double
precision.

. Table II is a listing of the parametric study to compare the
accuracy of the four series. For each pair of valu=s (ﬂ,q), the five
entries in succession are the exact solutiom, SO followed by
S&i), 1=1,2,3,4. The asteriks (*) dénote that no us~ful result could be
Vobtained from S& The sequences S& ), i=1,2,3,k werelgerminated either
when M = N, or vhen any intermediate number exceeded 16 By inspection
of Table I it is seen that S& is the most accurate s.ries with a
maximum error of .0002. Note that 31 of the 48 entries could not be
ccaputed using the series derived from the binomial expansion. TL:
average computation time for the cases studied was épproximately 1.4

seconds per case on BRLESC.

VI. CONCLUSIONS

A computational procedure for determining expected fractional
damage for an area target engaged by a salvce of area kill weaponc has
been presented. The procedure employs Jacobi polynomials and in most
cases the successive approximations converge rapidly.to the true
solution. wa new series solutions have been presented, one increasing
monotonically and the other decreasing monotonically with the summation
index, both approaching the true solution. A method for averaging the
two solutions has 8lso been presented which accelerates the convergence,
thereby making the method useful éven in extreme cases where n urev1:ai.
difficulties force the termination of the series_before convergence
of either has been reached.
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TABLE 1 :
COMPARISON ?F)SERIES CONVERG?N?E ()
h(l) fad 2 5 [nd
M Sy S M Sy
C * LGo0L1CTE * * »
1 JLeoooorc- 1 LTELEC3LY L2Lo6GLT3- 3 LAUTOEL T 2
o -. L0100 <. L1RCOETL 76752184 3 2oL 2158 2
E} BEISC 0 1 LEsLorto 13043077~ 2 LI3SEDTIL- 2
N 2071k 2 Srockrol J8kik1oTe 2 3547557 2
5 L122673501 3 L273583L2 .233CL0CS- 2 L3S 2
6 - 10584308 4 «1%60515¢ L2ThIhau3. 2 STEXThG - &
7 5006157 L 13627684 30842200« 2 I Tl (I e
g -, 20(T7C5E2 5 LYla701G3. 1 L32L4112G4 2 AEELT2R-
9 LTS1H6TLS S 6024950+ 1 L 35370562+ 2 I el t=ade g T
10 - 24317854 6 L36873154- 1 36729533~ 2 L3E0350CC- 2
11 LTOMOS3E 4 6 L2LTh27TC- 1 .3T6LC3LL- 2 L3Eac a0z 2
12 - 1835587126 7 .1585¢1CT- 1 .3E22131%. 2 H2N2IE 2
13 A3318622 7 .10L96L3L- 1 38503132~ 2 39038173~ 2
14 - 22902672 T 73983605~ 2 .388cT18E- 2 J3WCLESES~ 2
15 1817176 8 .56827172- 2 38527668~ 2 3.0526G5- 2
1€ -.32515208 8 L7729915- 2 .38992717- 2 .30054557- 2
17 .5335u€59 8 43114050~ 2 .39026279- 2 J2P055TE€=- 2
18 -.&olksaieo 8 L0874150- 2 350k2727- 2 «3GC5ECTS- 2
13 .11165G34 g .3983548E- 2 <3905CkTh- 2 L3H562E5- 2
2 = 1L2958% 9 .303755hR. 2 <30C53GkE- 2 .39C5€35E- 2
o1 LEEECTEL 9 .36181221- 2 L3C5542G. 2 335E3EL- 2
0D - 1PL25666 9 . 33102960~ 2 . 59056C3€6- 2 L3HS635T- 2
03 LLes92oHL g !
Zh -.1732656% 9 g =8z=-.5
23 L1LSEGELT 9 . o
26 | -.113C9k45 g No=5
27 BT743003 & qg=.9
2K -.54707817 8 1.0
25 L37L3L00S 8 °x =
3(, -.21701903 8
31 J115611LE 8 50.0
2 -.565€32r1 7 ' _
: (25387117 7 T Tl
34 - 1041L660 7
S LA
i -ﬁggzzﬁb ? Exact Solution = .39056396-02
57 JLCO0560G ¢
zi -:éééégéé{ i *This column of numbers indicates the power
LC 60601240 3 of ten by w?iih to multiply the table entry
Ll J11L5T3LE 3 to obtain SM .
Lo -.1G46k302 2
L3 L2T8L3CTSs 1
Ly - 3280155
Ls 36381647~ 1
LE LJL2ho507- 2
L7 JLAGULLETCS~- 2
L8 .39005338- 2
L9 .29057258- 2
50 .39056342- 2

21
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TABIE 1I o
PARAMETRIC STUDY OF SERIES ACCURACY
a=8=-1/2, Cg = 0y =0, Ry =50, op =1

S T P i 10 A 1195 72 B B0

T .01 .1 .3 .5 7 .G
S| - .035%8 01758 00679 G060 SCOLTS 00391
st L03558 L01758 LCBTO LGUECD LOOLTE L00301

s0 | $* L3558 01758 LCOBTY LOCELS LTS G351
s? 03558 .01758 LGORTG . CO60D LOThT3 O3
gt 03558 LC1758 - .COBTS .COFC LO0LT3 030
s° 06383 .02308 .C1062 Reayots LO0552 .CCLs2
st L06383 .02308 L01062 * * »
100 | §* L06383 J02308 01062 LOCT2% Nev e LOCS 1
s 06383 02308 | .cluoé2 00719 L0552 L00bE L
st 06363 .02308 .C1062 .00T19 00552 .0CL52
s: .o§273 ;02251 LG117C .CCT8L L0058 LCOLBE
S .CB6T3 L0263 » * » *
150 | s® .C9873 .02 % L0117k .CO8TY .01353 .C1LU6
I .CR6T3 .02.51 .01170 .COTR2 .CC53k .CObEC
st L08673 .02631 .0117C L0078k L0058 .COLBT
| 10566 02860 01246 o829 | .ocesl .GO515
, S .10566 .02860 * * L *
20 | & .10566 | .02860 .01283 .01255 02035 .02927
s .10566 .0286C .C1246 .00824 LCCELT RUR RN
st .10566 02860 .01246 00829 LCO631 .CO513
:: .13522 .03184 .0135k .CO8GL | LCO6TT | .COSLS
.13522 .o * * » *
300 | §° 13522 | L0318k LOLT1T 02855 .05168 .0T1C€
s .13522 .C318L LO1346 .00B€6 .00631 LOChY6
st .13522 .0318L 01354 .008G3 06675 L0057
g: .12727 | .o3uib ..01431 L0040 L0071 .00575
_1 7 T * » * » #*
uo | s® L15TLT .03416 .C2605 .05259 .08¢38 L11640
s® .15747 .C341L .01kC3 .CCBT8 .C0625 LLOLEY
st L157L7 .C3L1L .C1hk30 LOCH38 " L.CCTO6 .CC5T0
s: .1751¢C .035a2 .01L90 L0076 LOCT36 .CO5%k
S .17510 » » »*» »* »*
500 | §° .17510 .0360b .03903 .CBC15 12751 .15%38
s® .1751C .03541 .01L33 .CCBTL .CCELC .COLER
Y .17510 .03572 .01L88 .005T1 .CCT29 .0C587
s: .230&2 .OL1k6 .C1675 L1087 LORLS LCO656
S 23042 * " * PO .
1000 | s .23119 .0LT780 .126L3 213036 LOTELT .31823
s® .22958 .0Lk099 .C1hkC8 .COoT91 .0Cs25 . | .00893
s* .23039 .041k5 .01661 .C106T .00793 ] .00635
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